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T1 dimensional Laplace-Carson transform is u.sed to obtain a solution of the 

Goursat problem for the equation describing plane deformation of an ideally plas- 

tic body. The basic relationships in a field formed by circular arcs are investi- 
gated as an example. 

One of the methods of solving the boundary value problems of a plane flow of 
an ideally plastic medium consists of linearizing the quasilinear, hyperbolic, par- 
tial differential equation with help of the Mikhlin [I] substitution which reduces 
it to the equation of telegraphy. The linearized equation can be solved using the 

integral Riemann formula [2, 31, by expanding into a series in metacylindrical 
functions, or by means of the integral transforms. 

1. All functions appearing in this paper are assumed to be Laplace-transformable 
[5]. We note that this demand does not lead to any restrictions in practice. Let us de- 
note the curvilinear characteristic coordinates in the physical plane by M. and 6, and in 

the velocity hodograph plane by a’ and /3’. As we know, each of the functions X, Y, U, 
v, R, S, p and 6 of the plane problem of the theory of ideal plasticity satisfies theequa- 

tion of telegraphy 
(12fl&-dx 1 f = 0 (1.1) 

Here X and Y are the coordinates of the nodal points of the slip-lines in the moving 
coordinate system, U and V are the coordinates of the nodal points of the velocity 
hodograph in the moving coordinate system, R and s are the radii of curvature of the 

a- and p-lines, respectively, while p and S are the radii of curvature of the a’- and 
PI-lines. 

As usual. we shall regard the anticlockwise direction of counting the characteristic 

coordinates, as positive. 
Let Eq. (1.1) be defined in the physical plane, within the rectangle DO (- CO < cz < 

0, 0 e /J < CO). We denote 

+r = - o = I c.2 If f (a, fJ) = f C-T, B, = fP c-r* I3 (1.2) 

The equation (1.1) defined in the region D (0 < r < CC, 0 < p < co), can be rewritten 
in the form 

(1.3) 

To apply the operational method, we define the following values (where the arrow de- 
notes a passage to the image space): 

f (I a I. 0) = cp (TV 0) = a CT) - a* (p) (1.4) 
f (0, B) = cp (0, I$ = b 0) - b* (q), a (0) = b (0) = c - c 
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Using the formulas [s] for the transformation of derivatives and the boundary conditions 
(1.4), we obtain (1.3) in the following operator form : 

mP* b* a) - pqa* (p) - mJJ* cd + Pqc - cp* (p, q) = 0 (1.5) 
from which we obtain 

cp* (P, q) = P$!q !a* (P) + b* (4) - ~1 0.6) 

In the space of ~ansf~matio~s a product of two functions corresponds to the convolu- 
tion of the original functions [5], therefore we can write the solution of the equation in 
the region D, , with (1.2) taken into account, in the form 

f(~~~)=‘~‘~ilo(~~~)--ilI~(]~~-_4)+b(P--l))--c]d4d~ (1.7) 
00 

where (f, (z) is a Bessel function with an imaginary argument 

In the velocity hodograph plane the domain of definition of (1.1) is D, (0 < cd < 00; 
- 00 < fi’ < 0). In this case the substitution 

r = - V = I 6’ I, f (a’, --r) = \1 (a’, T) (1.8) 

yieldsane~~tion identical with (1.3). Its solution in D, has the form (1.7) in which 
a’ and f @’ 1 replace 1 c.t \ and p , respectively.in the right-hand side. We note that in 

the course of finding the solution in the original space we can apply the inverse Laplace- 

Carson transform formula [6] directly to (1.6). 

2, As an example, we shall consider the field of slip-lines formed by the initialarcs 
of the radii (Fig. 1) 

R (a, 0) = R. = eon& S (0, @) = S, = con& 

Let the jumps in the tangential velocity component propagating along the slip-lines 

a = a, and fl = & forming the boundary of the plastic region be, respectively, AV 

and AU. Then the velocity field in the velocity hodograph plane (Fig. 2) will be formed 

by the initial arcs of radii 

Fig. 1 Fig. 2 
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P (a’, 0) = AU = p. = const, 6 (0, p’) = AV = 6, = const 

The boundary conditions for the function 1. in the moving coordinate system, placed 
at the point P of the velocity hodograph, have the form 

1’ (CI’, 0) = n (r’) = p0 sin 2’ PO/’ 
- - = n* (p) 

P + 1 (2.1) 

I7 ((J, I P’ I) zz 6 (r) = &I (1 - cos r) - - (lz$ f = b* (rl) 

Reverting to the formula (1.6), we obtain the solution in the transformation space, and 
on returning to the original space, we obtain 

v \-- 7 S’) = po u, (2a’, 2iVa’l p’ I) + 6,Us (2 I fJ’ I, 2i1/a’ I p’ I) (2.2> 

where (U, (w, z) is the Lommel function of two variables. 
Taking into account the obvious relations connecting the physical plane variables 

with the hodograph plane variables 
a’ = a - ccl, B’ = B - PI 

we can obtain from (2.2) an analytic expression for the velocity vector increment along 

the P-lines in the physical plane. Similarly, for the function U the boundary conditions 

rJ (Y, 0) = a (a’) = po (1 - cos CY’) + -$$ = a* (P) 

6W U (0, r) = 6 (r) = 60 sin 7 --t - 
‘/2 + 1 = b* (Q) 

yield an expression for lJ (a’, /3’) which becomes (2.2) when the indices 1 and 2 are 
interchanged. 

Let us now give the intial conditions and the solution for the remaining parameters 

of the velocity hodograph and slip-line field depicted on Figs. 1 and 2. 
The radii of curvature of the a’- and p’-lines in the velocity hodograph plane are 

P (0, 7) = PO + 60 T, 6 (CL’, 0) = 6. +poar 
r- 

P (J’, 3’) = Polo (2 V a’ 1 p’ I) -t 60 1/- 
‘9 II(Z l/r/ ) j’ I) 

6 (r’, 9’) = 6010 (2 V)/a( 13’ I) t p, 

(2.3) 

The radii of curvature of the a- and p-lines in the physical plane are 

R (0. B) = Ro + So B, S (r, 0) = So + Ro-r (2.4) 

R (a, 3) = Role (2 I/m, -t So I/& fl(2 vm) 

The formulas (2.3) and (2.4) represent a generalization of the result obtained by Hill 
for a field bounded by arcs of equal radii, 

Finally, the coordinates of the nodal points in the field of slip-lines formed by the 

circular arcs are X(r, 0) = R. sin ‘r, x (0, p, = So (1 - cos @) _(2.5) 

X (a, B) = Ro UI (2 I a I, 2i v/I a I p) + sou, Gq3, 2i VI a I PI 
Y CT-, 0) = R, (1 - ~0s ~1. Y (0, fi) = So sin b -. 
Y (a, B) = Ro U, (2 I cc It 2i 1/l_) + sour (28, 2i 41 a I B) 
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It must be noted that, since the function Ur,is odd with respect to the first argument, 
the formulas (2.5) are identical with the result obtained in [Z]. 
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We consider the connection between the K&m& hypotheses concerning “self- 

preservation” (self-similarity) of correlation functions and power laws for the 
variation of the energy and the linear scale of turbulence downs~eam of a grid. 
Laws, based on the K&man hypotheses, are close, in the intervals where measure- 
ments are made, to power laws (they argree with the experimental data at least 
as well as power laws) and they possess certain advantages from the point ofview 
of the theory of homogeneous turbulence of a viscous incompressible fluid, We 
show that solutions, based on the K&m& hypotheses, are compatible with the 

equations for the higher moments, even if we assume for these moments addition- 
al hypotheses similar to the Karmin hypotheses. 

1. A theory for the decay of a homogeneous isotropic turbulent motion of a viscous 
incompressible fluid can proceed from various hypotheses relating to the behavior ofthe 
velocity correlation moments of the second and third order, for example. the K&m&n 
hy~theses [I] 

bdt2 (p, t) = (u (0, t) u (r, r)> = b (1) f (x) (1.1) 
bp (P, t) = (U (cl, t) 02 (P, t), = .b’f% (x) (1.2) 
(b (t) = bdd (0, t) = (u2> = <u2>, x = ri 1 (I)) 

Here r is the distance, t is the time, u is the projection of the velocity pulsation in 


